By the end of this course, learners will build, interpret, and evaluate decision tree models in R for both classification and regression tasks. They will gain hands-on skills in data preprocessing, feature engineering, and model training, while applying predictive techniques to real-world datasets including advertisements, diabetes outcomes, Caeseats sales, and bank loan defaults.

4 days left: Discover new skills with 30% off courses from industry experts. Save now.


Ce que vous apprendrez
Preprocess data, engineer features, and train decision tree models in R.
Visualize results and evaluate performance using confusion matrix and metrics.
Apply classification and regression trees to real-world business and financial cases.
Compétences que vous acquerrez
- Catégorie : Statistical Modeling
- Catégorie : Supervised Learning
- Catégorie : Data-Driven Decision-Making
Détails à connaître

Ajouter à votre profil LinkedIn
septembre 2025
13 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 4 modules dans ce cours
This module introduces learners to the fundamentals of decision tree modeling using R. It covers the basics of tree structure, data preparation, and the creation of classification models. By the end of this module, learners will understand how to preprocess data, construct decision trees, and evaluate model performance effectively.
Inclus
8 vidéos4 devoirs1 plugin
This module introduces learners to the fundamentals of Decision Tree modeling and its application in Bank Loan Default Prediction. Participants will explore the basics of analytics, understand the problem statement, and prepare their tools and datasets in R to begin predictive modeling with confidence.
Inclus
5 vidéos3 devoirs
This module explores advanced applications of decision trees in R, focusing on real-world datasets, regression trees, and visualization. Learners will practice prediction tasks, implement splitting strategies, and compare R packages for decision tree modeling.
Inclus
6 vidéos3 devoirs
This module focuses on applying Decision Tree modeling in R by preparing datasets, training models, and evaluating predictive performance. Learners will gain hands-on experience in coding, interpreting results using a confusion matrix, and understanding how decision trees support financial risk prediction.
Inclus
5 vidéos3 devoirs
En savoir plus sur Machine Learning
Coursera Project Network
- Statut : Essai gratuit
University of Washington
- Statut : Essai gratuit
Corporate Finance Institute
- Statut : Essai gratuit
EDHEC Business School
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Plus de questions
Aide financière disponible,