This hands-on course equips learners with the foundational knowledge and practical skills required to build and evaluate supervised machine learning models using Python. Designed around the real-world Titanic dataset, the course walks learners through the complete machine learning pipeline—from project setup and lifecycle understanding to model deployment readiness.

noch 3 Tage: Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Kompetenzen, die Sie erwerben
- Kategorie: Data Analysis
- Kategorie: Applied Machine Learning
- Kategorie: Predictive Modeling
- Kategorie: Pandas (Python Package)
- Kategorie: Data Manipulation
- Kategorie: Data Cleansing
- Kategorie: Classification And Regression Tree (CART)
- Kategorie: Statistical Modeling
- Kategorie: Exploratory Data Analysis
- Kategorie: Supervised Learning
- Kategorie: Machine Learning
- Kategorie: Decision Tree Learning
- Kategorie: Machine Learning Algorithms
- Kategorie: NumPy
- Kategorie: Feature Engineering
- Kategorie: Scikit Learn (Machine Learning Library)
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
6 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 2 Module
This module introduces learners to the foundational concepts and workflows involved in building supervised machine learning models using Python. It covers the real-world context of a data science project using the Titanic dataset, including the project lifecycle, problem definition, essential Python libraries for data analysis, and an overview of key algorithms such as Decision Trees and Logistic Regression. Through hands-on exposure, learners gain the practical knowledge required to begin implementing classification models and understand how to prepare and structure their machine learning pipeline.
Das ist alles enthalten
6 Videos3 Aufgaben
This module focuses on the practical steps involved in preparing data for supervised machine learning models. Learners will explore the process of conducting Exploratory Data Analysis (EDA), managing datasets, performing feature engineering, and visualizing insights using Python libraries such as pandas and seaborn. It further guides learners through the model building process, including dataset splitting, performance evaluation using confusion matrices, and applying cross-validation techniques to enhance model reliability.
Das ist alles enthalten
8 Videos3 Aufgaben
Mehr von Data Analysis entdecken
Coursera Project Network
- Status: Kostenloser Testzeitraum
- Status: Kostenloser Testzeitraum
Edureka
- Status: Kostenloser Testzeitraum
University of Pennsylvania
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,