The AI for Cybersecurity course offers a comprehensive introduction to the usage of AI methods, most specifically machine learning in the field of cybersecurity. It begins with an introduction to AI, covering its definitions, historical development, and general applications. The course then discusses the importance of AI in cybersecurity, introducing key concepts, and the distinction between the host security and the network security.

Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Empfohlene Erfahrung
Kompetenzen, die Sie erwerben
- Kategorie: Cybersecurity
- Kategorie: Data Ethics
- Kategorie: Natural Language Processing
- Kategorie: Threat Detection
- Kategorie: Supervised Learning
- Kategorie: Artificial Intelligence
- Kategorie: Anomaly Detection
- Kategorie: Intrusion Detection and Prevention
- Kategorie: Machine Learning
- Kategorie: Cyber Threat Intelligence
- Kategorie: Information Systems Security
- Kategorie: Malware Protection
- Kategorie: Artificial Intelligence and Machine Learning (AI/ML)
- Kategorie: Deep Learning
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufĂźgen
September 2025
21 Aufgaben
Erfahren Sie, wie Mitarbeiter fĂźhrender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 4 Module
Welcome to the introductory part of the AI and Cybersecurity course! During the 5 video lectures and 2 readings of this module you will find various definitions of the Artificial Intelligence, the evolution of this domain and the classification of the AI algorithms in search-based algorithms and intelligent systems. The domains where AI is successfully used are presented, with focus on the use of AI in cybersecurity related tasks (e.g.: network analysis, intrusion detection, malicious web link detection, anomaly detection or malware classification ). Afterwards, the basic concepts of cybersecurity will be introduced, and the classification of security threats at endpoint level or internet level. You will discover types of cybersecurity threats and how they can be defended.
Das ist alles enthalten
12 Videos7 LektĂźren7 Aufgaben1 Diskussionsthema
Welcome to the second module of the AI for Cybersecurity course. This module consists of five lessons that explore different AI techniques and their applications in cybersecurity. It begins with an introduction to Machine Learning (ML) and its three basic types. The second lesson discusses three key cybersecurity tasks and explains how ML can be applied to address them. In the third lesson, you will follow a practical example of implementing and evaluating a malware detection system using two ML models: Decision Trees and Random Forests. The fourth lesson introduces fundamental concepts of deep learning (DL) and its applications in cybersecurity. Finally, the module concludes with an overview of Natural Language Processing (NLP) and how it can be used for cybersecurity-related tasks.
Das ist alles enthalten
31 Videos2 LektĂźren10 Aufgaben
This module explores how AI techniques are applied to detect and mitigate online threats. It begins with an overview of malicious web links, explaining how they redirect users, run harmful code, and spread misinformation like fake news and phishing content. Detection methods are categorized into dynamic (e.g., sandboxing, honeypots) and static (e.g., URL analysis, blacklists, machine learning models). The module also details how URLs can be analyzed through lexical, host-based, and social media features. A special focus is given to Domain Generation Algorithms (DGAs), which malware uses to create deceptive domain names. Detecting DGAs is challenging and involves either manual feature extraction or automated learning methods. Another topic of this module is detecting fake news using deep learning modules. Finally, the presentation briefly talks about clickbait detection. Real-world case studies and research-backed solutions are presented throughout. By the end, learners are equipped to recognize key cyber threats and understand the AI models used to counter them.
Das ist alles enthalten
5 Videos1 LektĂźre2 Aufgaben
This final module explores the ethical challenges and legal frameworks surrounding the use of AI in cybersecurity. Key concepts such as safety vs. security, risk management, and the balance between privacy and protection will be discussed. We will introduce the AI4People framework - autonomy, non-maleficence, beneficence, justice, and explainability - and examine its application to real-world cyber threats. The module also covers key regulations such as the EU AI Act, NIS2, the Cyber Resilience Act, and DORA, along with ethical guidelines from ACM, IEEE, and ISSA. Finally, we'll look at future trends, including open-source collaboration, ethical hacking, and global cooperation in securing AI systems. By the end, learners will understand the ethical and regulatory landscape and be prepared for the evolving challenges of AI in cybersecurity.
Das ist alles enthalten
3 Videos2 LektĂźren2 Aufgaben
Erwerben Sie ein Karrierezertifikat.
FĂźgen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
von
Mehr von Algorithms entdecken
- Status: Kostenloser Testzeitraum
Johns Hopkins University
- Status: Kostenloser Testzeitraum
Johns Hopkins University
- Status: Kostenloser Testzeitraum
Johns Hopkins University
- Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen fĂźr Coursera fĂźr ihre Karriere?





Neue KarrieremĂśglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten â 100 % online
SchlieĂen Sie sich mehr als 3.400Â Unternehmen in aller Welt an, die sich fĂźr Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once youâve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle UnterstĂźtzung verfĂźgbar,