This Specialization is intended for post-graduate students seeking to develop advanced skills in neural networks and deep learning. Through three courses, you will cover the mathematical theory behind neural networks, including feed-forward, convolutional, and recurrent architectures, as well as deep learning optimization, regularization techniques, unsupervised learning, and generative adversarial networks. You will also explore the ethical issues associated with neural network applications. By the end of the specialization, you will gain hands-on experience in formulating and implementing algorithms using Python, allowing you to apply theoretical concepts to real-world data. This specialization prepares you to design, analyze, and deploy neural networks for practical applications in fields such as AI, machine learning, and data science, and equips you with the tools to address ethical considerations in AI systems. As you progress, you'll be able to independently implement and evaluate a variety of neural network models, setting a strong foundation for a career in AI research or development.

Découvrez de nouvelles compétences avec 30 % de réduction sur les cours dispensés par des experts du secteur. Économisez maintenant.


Spécialisation Foundations of Neural Networks
Master Neural Networks for AI and Machine Learning. Gain hands-on experience with neural networks, advanced techniques, and ethical AI practices to solve real-world challenges in machine learning and AI applications.

Instructeur : Zerotti Woods
Inclus avec
Expérience recommandée
Expérience recommandée
Ce que vous apprendrez
Understand the mathematical foundations of neural networks, including deep learning optimization, regularization, and ethical considerations in AI.
Gain hands-on experience in implementing and analyzing various neural network architectures, such as CNNs, RNNs, and GANs, using Python.
Explore topics like probabilistic models, model evaluation, and bias mitigation, preparing for real-world applications in AI and deep learning.
Vue d'ensemble
Compétences que vous acquerrez
- Artificial Neural Networks
- Reinforcement Learning
- Image Analysis
- Artificial Intelligence
- Debugging
- Markov Model
- Bayesian Statistics
- Applied Machine Learning
- Linear Algebra
- Machine Learning
- Deep Learning
- Machine Learning Methods
- Unsupervised Learning
- Artificial Intelligence and Machine Learning (AI/ML)
- Data Ethics
- Network Architecture
- Machine Learning Algorithms
- Computer Vision
- Responsible AI
Outils que vous découvrirez
Ce qui est inclus

Ajouter à votre profil LinkedIn
Améliorez votre expertise en la matière
- Acquérez des compétences recherchées auprès d’universités et d’experts du secteur
- Maîtrisez un sujet ou un outil avec des projets pratiques
- Développez une compréhension approfondie de concepts clés
- Obtenez un certificat professionnel auprès de Johns Hopkins University

Spécialisation - série de 3 cours
Ce que vous apprendrez
Understand the foundational mathematics and key concepts driving neural networks and machine learning.
Analyze and apply machine learning algorithms, optimization methods, and loss functions to train and evaluate models effectively.
Explore the design and structure of feedforward neural networks, using gradient descent to optimize and train deep models.
Investigate convolutional neural networks, their elements, and how they apply to real-world problems like image processing and computer vision.
Compétences que vous acquerrez
Ce que vous apprendrez
Analyze and implement Recurrent Neural Networks (RNNs) to process sequence data and solve tasks like time series prediction and language modeling.
Explore autoencoders for data compression, feature extraction, and anomaly detection, along with their applications in diverse fields.
Develop and evaluate generative models, such as GANs, understanding their mathematical foundations and deployment challenges.
Apply reinforcement learning techniques using Markov Chains and deep neural networks to tackle complex decision-making problems.
Compétences que vous acquerrez
Ce que vous apprendrez
Learners will gain hands-on experience training and debugging deep learning models while considering deployment challenges and best practices.
Students will understand and evaluate ethical concerns in AI, including bias, fairness, and the societal impact of deploying neural networks.
Learners will explore how to integrate structured probabilistic models with deep learning, reducing uncertainty and improving model decision-making.
Compétences que vous acquerrez
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
The specialization is designed to be completed at your own pace, but on average, it is expected to take approximately 3 months to finish if you dedicate around 5 hours per week. However, as it is self-paced, you have the flexibility to adjust your learning schedule based on your availability and progress.
You are encouraged to take the courses in the recommended sequence to ensure a smoother learning experience, as each course builds on the knowledge and skills developed in the previous ones. However, you are not required to follow a specific order, and you can take the courses in the order that best suits your needs and prior knowledge.
This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.
Plus de questions
Aide financière disponible,