This hands-on course guides learners through the complete lifecycle of predictive modeling, using a real-world banking use case to forecast term deposit subscriptions. Learners will begin by defining a business problem, analyzing and interpreting raw data through Exploratory Data Analysis (EDA), and applying data preparation techniques such as imputation and variable selection.

Fin ce soir : Découvrez de nouvelles compétences avec 30 % de réduction sur les cours dispensés par des experts du secteur. Économisez maintenant.


Ce que vous apprendrez
Perform EDA and prepare banking data using imputation and variable selection.
Build predictive models with IV analysis, binning, and multicollinearity checks.
Evaluate models using KS, AUC, Lift, and deploy them in simulated production.
Compétences que vous acquerrez
- Catégorie : Data Validation
- Catégorie : Classification And Regression Tree (CART)
- Catégorie : Statistical Analysis
- Catégorie : Data Modeling
- Catégorie : Application Deployment
Détails à connaître

Ajouter à votre profil LinkedIn
septembre 2025
8 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 2 modules dans ce cours
This module introduces learners to the foundational steps of building a predictive model in a real-world banking context. It begins by clearly defining the business problem of predicting customer subscription to a term deposit product. The module then guides learners through understanding the dataset, exploring key variables using Exploratory Data Analysis (EDA), and preparing the data for modeling by handling missing values and selecting relevant features. By the end of the module, learners will be equipped with essential data preprocessing skills and the ability to frame analytical problems for machine learning applications.
Inclus
9 vidéos4 devoirs
This module equips learners with the tools and techniques required to build, assess, and improve predictive models. It begins with the development of models using Information Value and multicollinearity checks to select the right variables. Learners then explore techniques to assess model performance using ranking tables, the Kolmogorov-Smirnov (KS) statistic, AUC, and Lift metrics. The module concludes with optimization strategies such as monotonicity adjustment and decision tree refinement, followed by validation and deployment of the model to unseen datasets. By the end of the module, learners will be proficient in developing, evaluating, and preparing models for production environments.
Inclus
9 vidéos4 devoirs
En savoir plus sur Data Analysis
- Statut : Essai gratuit
University of Colorado Boulder
- Statut : Essai gratuit
University of California, Irvine
- Statut : Prévisualisation
- Statut : Essai gratuit
University of Minnesota
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Plus de questions
Aide financière disponible,