Northeastern University
Machine Learning with Small Data Part 2

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Northeastern University

Machine Learning with Small Data Part 2

Sarah Ostadabbas

Instructeur : Sarah Ostadabbas

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
1 semaine à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
1 semaine à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Compétences que vous acquerrez

  • Catégorie : Image Analysis
  • Catégorie : Applied Machine Learning
  • Catégorie : 3D Modeling
  • Catégorie : Simulations
  • Catégorie : Deep Learning
  • Catégorie : Small Data
  • Catégorie : Augmented and Virtual Reality (AR/VR)
  • Catégorie : Computer Graphics
  • Catégorie : Data Synthesis
  • Catégorie : Generative AI
  • Catégorie : Machine Learning
  • Catégorie : Computer Vision
  • Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
  • Catégorie : Mathematical Modeling

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

septembre 2025

Évaluations

7 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

 logos de Petrobras, TATA, Danone, Capgemini, P&G et L'Oreal

Il y a 7 modules dans ce cours

In this module, we will introduce the fundamentals of Multi-Task Learning (MTL), a paradigm where multiple related tasks are learned simultaneously by sharing representations. This approach leverages the commonalities among tasks to improve generalization, reduce overfitting, and achieve better performance with fewer training examples. We will explore how MTL is applied across various domains, such as natural language processing, computer vision, and speech recognition, and examine practical examples such as using MTL to enhance image classification and object detection in autonomous systems. Students will gain insights into both the benefits and challenges of MTL, including issues such as task imbalance, negative transfer, and scalability. Additionally, we will delve into meta-learning techniques, such as Conditional Neural Adaptive Processes (CNAPs), that extend MTL by enabling models to quickly adapt to new tasks with minimal data.

Inclus

1 vidéo15 lectures1 devoir

This module explores the concept of meta-learning, or "learning to learn," which enables models to generalize across various tasks by leveraging knowledge from similar tasks. We will delve into key meta-learning algorithms such as Model-Agnostic Meta-Learning (MAML) and Prototypical Networks and examine their applications in computer vision using datasets such as ImageNet, Omniglot, CUB-200-2011, and FGVC-Aircraft. The module also covers the Meta-Dataset framework, which provides a diverse range of tasks for training robust and adaptable meta-learning models.

Inclus

1 vidéo7 lectures1 devoir

This module focuses on generative models for data augmentation, covering key generative AI techniques that enhance machine learning applications by generating synthetic but realistic data. We begin by introducing generative adversarial networks (GANs), Variational Autoencoders (VAEs), Normalizing Flows, Diffusion Models, and Motion Graphs, highlighting their mathematical foundations, training mechanisms, and real-world applications. Additionally, we discuss the limitations of each model and the computational challenges they present. The lecture provides insights into how generative models contribute to modern AI systems, including image synthesis, domain adaptation, super-resolution, motion synthesis, and data augmentation in small-data learning scenarios.

Inclus

1 vidéo28 lectures1 devoir

This module focuses on physics-based simulation for data augmentation, exploring how physics-driven techniques generate realistic synthetic data to enhance machine learning models. We will discuss key advantages of physics-based simulations, such as scalability, cost-effectiveness, and their ability to model rare events. The module also covers notable approaches, including GeoNet (CVPR 2018) for depth and motion estimation, ScanAva (ECCVW 2018) for semi-supervised learning with 3D avatars, and SMPL (ACM Transactions on Graphics, Volume 15) for human body modeling. Additionally, we introduce equation-based simulation techniques such as Finite Element Method (FEM) and Navier-Stokes equations for modeling fluid dynamics. The module highlights challenges in bridging the simulation-to-reality gap and optimizing computational costs while ensuring high-fidelity synthetic data generation.

Inclus

1 vidéo10 lectures1 devoir

This module introduces Neural Radiance Fields (NeRF), a deep learning-based approach for synthesizing novel views of complex 3D scenes. Unlike traditional 3D reconstruction techniques such as Structure-from-Motion (SfM) and Multi-View Stereo (MVS), which rely on explicit point cloud representations, NeRF learns a continuous volumetric representation of a scene using a fully connected neural network. By taking a set of 2D images captured from different viewpoints, NeRF estimates the density and color of light rays at each spatial location, enabling high-quality, photorealistic novel view synthesis. The lecture also explores how NeRF improves upon prior methods, such as depth estimation, photogrammetry, and classic geometric techniques. Understanding NeRF provides valuable insights into data-efficient 3D scene representation—a critical area for applications in computer vision, robotics, virtual reality (VR), and augmented reality (AR).

Inclus

1 vidéo6 lectures1 devoir

This module explores diffusion models, a class of generative models that incrementally add noise to data and then learn to reverse the process to reconstruct high-quality samples. Diffusion models have gained prominence due to their state-of-the-art performance in image, video, and text generation, surpassing GANs in terms of sample quality and diversity. The module covers the foundational principles of Denoising Diffusion Probabilistic Models (DDPMs) and their training objectives, advancements such as Score-Based Generative Models, Latent Diffusion Models (LDMs), and Classifier-Free Guidance techniques. We also examine their real-world applications in text-to-image generation (Stable Diffusion, DALL·E), video synthesis (Sora, Veo 2), and high-resolution image synthesis. Finally, the module provides insights into the mathematical framework, the optimization strategies, and the growing role of diffusion models in AI-driven content creation.

Inclus

1 vidéo11 lectures1 devoir

This lecture explores 3D Gaussian Splatting (3DGS), a novel approach in computer vision for high-fidelity, real-time 3D scene rendering. Unlike traditional methods like Neural Radiance Fields (NeRF), which rely on continuous neural fields, 3DGS represents scenes using a collection of discrete anisotropic Gaussian functions. These Gaussians efficiently approximate scene geometry, radiance, and depth, enabling real-time rendering with minimal computational overhead. We discuss the theoretical foundations, mathematical formulations, and rendering techniques that make 3D Gaussian Splatting a game-changer in virtual reality (VR), augmented reality (AR), and interactive media. Additionally, we highlight key differences between isotropic and anisotropic Gaussian splats, their impact on rendering quality, and how optimization techniques refine their accuracy. Finally, we compare 3DGS to NeRF, analyzing their trade-offs in rendering speed, computational efficiency, and application suitability.

Inclus

1 vidéo6 lectures1 devoir

Instructeur

Sarah Ostadabbas
Northeastern University
2 Cours176 apprenants

Offert par

En savoir plus sur Machine Learning

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions