By the end of this course, learners will be able to build, train, and evaluate machine learning and deep learning models using Python, Scikit-learn, and TensorFlow. They will confidently preprocess datasets, apply classical algorithms, visualize insights, and design neural networks to solve real-world problems.



Was Sie lernen werden
Preprocess datasets, apply classical ML algorithms, and visualize insights in Python.
Build, train, and evaluate machine learning models with Scikit-learn.
Design and implement neural networks with TensorFlow for real-world problems.
Kompetenzen, die Sie erwerben
- Kategorie: Feature Engineering
- Kategorie: Seaborn
- Kategorie: Machine Learning
- Kategorie: Python Programming
- Kategorie: Scikit Learn (Machine Learning Library)
- Kategorie: NumPy
- Kategorie: Tensorflow
- Kategorie: Artificial Neural Networks
- Kategorie: Data Processing
- Kategorie: Development Environment
- Kategorie: Pandas (Python Package)
- Kategorie: Data Cleansing
- Kategorie: Image Analysis
- Kategorie: Jupyter
- Kategorie: Matplotlib
- Kategorie: Deep Learning
- Kategorie: Regression Analysis
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
21 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 5 Module
This module introduces learners to the foundations of machine learning, its real-world applications, and the tools needed to begin hands-on practice. Students explore what machine learning is, how machines learn, and where ML is applied across industries, setting the stage for practical TensorFlow projects.
Das ist alles enthalten
9 Videos4 Aufgaben1 Plug-in
This module equips learners with essential ML tools such as Anaconda, Jupyter Notebook, and Python libraries. Students learn to manage environments, leverage third-party packages, and perform numerical computations with NumPy for efficient machine learning pipelines.
Das ist alles enthalten
14 Videos4 Aufgaben
This module focuses on preparing, analyzing, and visualizing data using Pandas, Matplotlib, and Seaborn. Learners handle complex datasets, manage missing values, and create insightful visualizations to uncover patterns, trends, and anomalies essential for ML readiness.
Das ist alles enthalten
38 Videos5 Aufgaben
This module covers essential preprocessing techniques, data transformation, and classical ML algorithms. Students practice feature engineering, scaling, encoding, and regression modeling while leveraging Scikit-learn to prepare clean and structured datasets.
Das ist alles enthalten
22 Videos4 Aufgaben
This module introduces deep learning with TensorFlow, covering computational graphs, operations, regression models, and neural networks. Students build and train models using activation functions, optimizers, and the MNIST dataset for hands-on image classification.
Das ist alles enthalten
27 Videos4 Aufgaben
Mehr von Machine Learning entdecken
- Status: Kostenloser Testzeitraum
Imperial College London
- Status: Kostenloser Testzeitraum
DeepLearning.AI
- Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,