By the end of this course, learners will build, interpret, and evaluate decision tree models in R for both classification and regression tasks. They will gain hands-on skills in data preprocessing, feature engineering, and model training, while applying predictive techniques to real-world datasets including advertisements, diabetes outcomes, Caeseats sales, and bank loan defaults.

Morgen endet die Aktion: Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Was Sie lernen werden
Preprocess data, engineer features, and train decision tree models in R.
Visualize results and evaluate performance using confusion matrix and metrics.
Apply classification and regression trees to real-world business and financial cases.
Kompetenzen, die Sie erwerben
- Kategorie: Statistical Modeling
- Kategorie: Supervised Learning
- Kategorie: Data-Driven Decision-Making
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
13 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 4 Module
This module introduces learners to the fundamentals of decision tree modeling using R. It covers the basics of tree structure, data preparation, and the creation of classification models. By the end of this module, learners will understand how to preprocess data, construct decision trees, and evaluate model performance effectively.
Das ist alles enthalten
8 Videos4 Aufgaben1 Plug-in
This module introduces learners to the fundamentals of Decision Tree modeling and its application in Bank Loan Default Prediction. Participants will explore the basics of analytics, understand the problem statement, and prepare their tools and datasets in R to begin predictive modeling with confidence.
Das ist alles enthalten
5 Videos3 Aufgaben
This module explores advanced applications of decision trees in R, focusing on real-world datasets, regression trees, and visualization. Learners will practice prediction tasks, implement splitting strategies, and compare R packages for decision tree modeling.
Das ist alles enthalten
6 Videos3 Aufgaben
This module focuses on applying Decision Tree modeling in R by preparing datasets, training models, and evaluating predictive performance. Learners will gain hands-on experience in coding, interpreting results using a confusion matrix, and understanding how decision trees support financial risk prediction.
Das ist alles enthalten
5 Videos3 Aufgaben
Mehr von Machine Learning entdecken
Coursera Project Network
- Status: Kostenloser Testzeitraum
University of Washington
- Status: Kostenloser Testzeitraum
Corporate Finance Institute
- Status: Kostenloser Testzeitraum
EDHEC Business School
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,