By completing this course, learners will be able to implement logistic regression models in SAS, prepare datasets through missing value imputation and categorical encoding, analyze predictors using clustering and screening, and evaluate models with confusion matrices and logit plots. Designed for aspiring data scientists, analysts, and business professionals, this course blends statistical rigor with hands-on SAS demonstrations.

Morgen endet die Aktion: Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Was Sie lernen werden
Implement logistic regression models with SAS.
Prepare datasets with imputation and categorical encoding.
Evaluate models using clustering, screening, and confusion matrices.
Kompetenzen, die Sie erwerben
- Kategorie: Statistical Modeling
- Kategorie: Statistical Methods
- Kategorie: Feature Engineering
- Kategorie: Data Cleansing
- Kategorie: Applied Machine Learning
- Kategorie: Predictive Analytics
- Kategorie: Predictive Modeling
- Kategorie: Statistical Analysis
- Kategorie: SAS (Software)
- Kategorie: Data Transformation
- Kategorie: Data Processing
- Kategorie: Regression Analysis
- Kategorie: Exploratory Data Analysis
- Kategorie: Data Manipulation
- Kategorie: Classification And Regression Tree (CART)
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
11 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 3 Module
This module introduces learners to the foundations of logistic regression and the importance of data preparation when working in SAS. Students explore the basics of binary classification, apply logistic regression using PROC LOGISTIC, and prepare datasets by handling missing values and encoding categorical variables. By the end of this module, learners will have the skills to structure datasets correctly and build their first logistic regression models in SAS.
Das ist alles enthalten
7 Videos4 Aufgaben1 Plug-in
This module focuses on advanced data preparation techniques to improve logistic regression performance. Learners examine variable clustering to reduce redundancy, use screening techniques to evaluate predictor importance, and explore subset selection methods to refine model inputs. The emphasis is on selecting the most relevant predictors, improving efficiency, and ensuring model stability in SAS.
Das ist alles enthalten
8 Videos4 Aufgaben
This module advances into model building strategies and performance evaluation. Students explore stepwise and backward elimination techniques to refine predictors, implement models using PROC LOGISTIC and ODS, and assess model performance with misclassification analysis, confusion matrices, and logit plots. Learners will gain the ability to build robust logistic regression models and validate them effectively in SAS.
Das ist alles enthalten
6 Videos3 Aufgaben
Mehr von Data Analysis entdecken
- Status: Kostenloser Testzeitraum
- Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,