O.P. Jindal Global University
Introduction to Data Science (Public Policy)

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
O.P. Jindal Global University

Introduction to Data Science (Public Policy)

Sushant Kumar

Dozent: Sushant Kumar

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Anfänger

Empfohlene Erfahrung

2 Wochen zu vervollständigen
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Auf einen Abschluss hinarbeiten
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Anfänger

Empfohlene Erfahrung

2 Wochen zu vervollständigen
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Auf einen Abschluss hinarbeiten

Kompetenzen, die Sie erwerben

  • Kategorie: Data Structures
  • Kategorie: Data Collection
  • Kategorie: Data Visualization Software
  • Kategorie: Programming Principles
  • Kategorie: Data Manipulation
  • Kategorie: Seaborn
  • Kategorie: Histogram
  • Kategorie: Matplotlib
  • Kategorie: Research
  • Kategorie: JSON
  • Kategorie: Web Scraping
  • Kategorie: Data Science
  • Kategorie: Research Design
  • Kategorie: Data Ethics
  • Kategorie: Python Programming
  • Kategorie: Natural Language Processing
  • Kategorie: Data Literacy
  • Kategorie: Data Analysis

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

September 2025

Bewertungen

14 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

 Logos von Petrobras, TATA, Danone, Capgemini, P&G und L'Oreal

In diesem Kurs gibt es 7 Module

Data is everywhere. From historical documents to literature and poems, diaries to political speeches, government documents, emails, text messages, social media, images, maps, cell phones, wearable sensors, parking meters, credit card transactions, Zoom, surveillance cameras. Combined with rapidly expanding computational power and increasingly sophisticated algorithms, we have an explosion of digital data around us. Privacy, ethics, surveillance, bias, discrimination are some of the obvious policy issues emanating from these data sources. But there is also incredible potential for better understanding the social world, and the potential to use data for good.In this course we will explore how data and digital material can be leveraged to have a better understanding of social issues. We will devote a substantial component of the course to explore the technical skills necessary to access and analyze data (aka programming in Python!), and best practices re: research design, and the practical knowledge we and others can produce using digital data and methods.In this module, we will introduce Python programming using Jupyter Notebook, accessible via Anaconda or Google Colab. It begins with setting up the environment and executing Python code. Learners will explore fundamental concepts such as printing values, identifying variable types, and working with different data types. The module covers statements, expressions, and operators, including arithmetic, comparison, and assignment operators. There will be a dedicated section on strings introduces string operations and manipulation. Logical and Boolean expressions, along with conditional statements (if, else, elif), will also be explored to understand decision-making in Python, including nested and chained conditionals. Additionally, user input handling will also be covered to enable interactive programming. The module concludes with an introduction to Markdown, helping learners document their work effectively in Jupyter Notebook.

Das ist alles enthalten

11 Videos3 Lektüren2 Aufgaben

The second module explores key programming concepts, beginning with built-in and user-defined functions to enhance code reusability and efficiency. It covers string methods, including splitting strings for text manipulation. Learners will also delve into list methods such as slicing, using the in operator for membership testing, and joining lists. Iterations, including loops, are introduced to automate repetitive tasks, followed by combining loops and conditionals to create dynamic and logical programs. The module concludes with practice exercises to reinforce these concepts and improve problem-solving skills.

Das ist alles enthalten

10 Videos2 Aufgaben

The third module focuses on the concepts of iterations, while loop and for loop in greater detail. We will specifically learn how to update variables, how to write while loops, execute infinite while loops and finishing iterations using “continue” statement. We will also look at writing definite loops using for statements. We will learn counting and summing iteratively going through loops. We will learn how to find out maximum and minimum elements, typically in a list, using loops. We will further go through iterating through lists and learn how to do debugging which is important as you do more advance programming.

Das ist alles enthalten

11 Videos2 Aufgaben

The fourth module focuses on handling and analyzing data efficiently. It begins with understanding relative file structures for accessing and organizing files. Learners will explore Pandas DataFrames, a powerful data structure for managing datasets, along with slicing techniques to extract specific data. The module covers summary statistics to describe datasets and methods for comparing differences between means. Visualization techniques using Matplotlib and Seaborn will be introduced, including histograms, scatterplots, and barplots for effective data representation. Finally, practice exercises will reinforce these concepts, enabling learners to apply data analysis and visualization techniques effectively.

Das ist alles enthalten

7 Videos2 Aufgaben

The fifth module delves into essential data structures and text processing techniques. It begins with tuples and dictionaries, exploring their properties and use cases. Learners will then cover list and dictionary comprehension, which provide efficient ways to create and manipulate data structures. The module introduces fundamental text analysis concepts, including counting words, calculating the type-token ratio, and analyzing word frequencies. Next, it covers tokenizing text and preprocessing, essential steps for cleaning and structuring textual data. Additionally, learners will practice reading text files to extract and analyze information. The module concludes with practice exercises to reinforce these concepts through hands-on experience.

Das ist alles enthalten

10 Videos2 Aufgaben

The sixth module delves into essential data structures and text processing techniques. It begins with tuples and dictionaries, exploring their properties and use cases. Learners will then cover list and dictionary comprehension, which provide efficient ways to create and manipulate data structures. The module introduces fundamental text analysis concepts, including counting words, calculating the type-token ratio, and analyzing word frequencies. Next, it covers tokenizing text and preprocessing, essential steps for cleaning and structuring textual data. Additionally, learners will practice reading text files to extract and analyze information. The module concludes with practice exercises to reinforce these concepts through hands-on experience.

Das ist alles enthalten

7 Videos2 Aufgaben

The seventh and final module introduces accessing and extracting data from the web. It begins with accessing databases via Web APIs, followed by constructing API GET requests to retrieve data. Learners will then explore parsing response texts and JSON files to extract meaningful information, such as counting the number of articles. The module also covers web scraping using BeautifulSoup, enabling automated data extraction from websites.

Das ist alles enthalten

8 Videos2 Lektüren2 Aufgaben

Auf einen Abschluss hinarbeiten

Dieses Kurs ist Teil des/der folgenden Studiengangs/Studiengänge, die von O.P. Jindal Global Universityangeboten werden. Wenn Sie zugelassen werden und sich immatrikulieren, können Ihre abgeschlossenen Kurse auf Ihren Studienabschluss angerechnet werden und Ihre Fortschritte können mit Ihnen übertragen werden.¹

 

Dozent

Sushant Kumar
O.P. Jindal Global University
1 Kurs17 Lernende

von

Mehr von Data Analysis entdecken

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Coursera Plus

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen