AWS: ML Workflows with SageMaker, Storage & Security is the fourth course in the Exam Prep (MLA-C01): AWS Certified Machine Learning Engineer – Associate Specialization. This course enables learners to design secure, scalable, and efficient machine learning workflows on AWS, focusing on key pillars: data storage, model development, and security.

Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


AWS: ML Workflows with SageMaker, Storage & Security
Dieser Kurs ist Teil von Spezialisierung für Exam Prep MLA-C01: AWS Machine Learning Engineer Assocaite

Dozent: Whizlabs Instructor
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Compare AWS storage options and select the appropriate solution for ML data management.
Explore the end-to-end capabilities of Amazon SageMaker for building and managing ML workflows.
Secure sensitive data using AWS KMS and Secrets Manager for encryption and credential management.
Kompetenzen, die Sie erwerben
- Kategorie: Data Pipelines
- Kategorie: Cloud Security
- Kategorie: AWS Kinesis
- Kategorie: Amazon CloudWatch
- Kategorie: Amazon Redshift
- Kategorie: Data Storage
- Kategorie: Real Time Data
- Kategorie: AWS SageMaker
- Kategorie: Encryption
- Kategorie: Data Security
- Kategorie: Feature Engineering
- Kategorie: Amazon S3
- Kategorie: AWS Identity and Access Management (IAM)
- Kategorie: MLOps (Machine Learning Operations)
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
8 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 4 Module
Welcome to Week 1 of the AWS: End-to-End ML Workflows with SageMaker, Storage & Security course. This week, you’ll explore the core data infrastructure and streaming services that power scalable machine learning workflows on AWS. We’ll start by reviewing storage options such as Amazon S3, EBS, EFS, and FSx for NetApp ONTAP, and discuss how to select the right storage service based on performance and ML use case requirements. Next, you’ll examine database options for ML, followed by an in-depth look at real-time data ingestion and streaming using services like Amazon Kinesis, Amazon Managed Streaming for Apache Kafka, and Amazon Managed Service for Apache Flink. You’ll also complete a hands-on activity where you’ll create a data streaming pipeline using Kinesis Streams, Amazon S3, and AWS Lambda, enabling real-time data collection and processing for machine learning applications.
Das ist alles enthalten
10 Videos2 Lektüren2 Aufgaben
Welcome to Week 2 of the AWS: Model Training, Optimization & Deployment course. This week, you'll explore the broader capabilities of Amazon SageMaker and how it supports the full machine learning lifecycle. We’ll begin with an introduction and demo of SageMaker, highlighting its core services and development environment. You’ll then take a deeper dive into SageMaker Data Wrangler for efficient data preparation, followed by a detailed walkthrough of the SageMaker Feature Store, which enables consistent feature reuse across training and inference. As we move forward, you'll learn how to monitor model performance using SageMaker Model Monitor, helping ensure reliability and detect data drift in production. We’ll wrap up the week by using SageMaker JumpStart to quickly deploy pre-built models and solution templates, accelerating your ML experimentation and deployment process.
Das ist alles enthalten
6 Videos1 Lektüre2 Aufgaben
Welcome to Week 3 of the AWS: End-to-End ML Workflows with SageMaker, Storage & Security course. This week, you'll focus on securing and governing your machine learning workloads on AWS. We’ll start by exploring AWS Key Management Service (KMS) and AWS Secrets Manager, which help you securely store, manage, and encrypt sensitive data such as API keys and credentials. Next, we’ll cover AWS WAF and AWS Shield, two essential services for protecting ML applications from web threats and Distributed Denial of Service (DDoS) attacks. You’ll also learn how to use Amazon Macie to detect and protect sensitive data within S3 buckets, ensuring compliance with data privacy standards. We’ll wrap up the week with AWS Trusted Advisor, a powerful tool that provides real-time recommendations to improve security, performance, and fault tolerance across your AWS environment—enabling you to maintain a secure and cost-efficient ML infrastructure.
Das ist alles enthalten
6 Videos1 Lektüre2 Aufgaben
Welcome to Week 4 of the AWS: End-to-End ML Workflows with SageMaker, Storage & Security course. This week, you’ll explore tools that help you monitor, visualize, and optimize your machine learning workflows in production. We’ll begin with Amazon QuickSight, where you’ll learn how to analyze and visualize ML outputs for better business insights. You’ll then dive into SageMaker Model Monitor to detect anomalies in deployed models and ensure ongoing performance. To strengthen observability, you’ll work with AWS X-Ray and CloudWatch Logs to trace model behavior, debug issues, and gain insights into operational metrics. We’ll wrap up by using AWS Cost Explorer and Trusted Advisor to monitor usage and cost, and explore SageMaker Inference Recommender to choose optimal instance types for model deployment—ensuring cost-effective and high-performance inference at scale.
Das ist alles enthalten
6 Videos3 Lektüren2 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Algorithms entdecken
- Status: Kostenloser Testzeitraum
Duke University
- Status: Kostenloser Testzeitraum
- Status: Kostenloser Testzeitraum
- Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,