Whizlabs
AWS: ML Workflows with SageMaker, Storage & Security

Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Whizlabs

AWS: ML Workflows with SageMaker, Storage & Security

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

1 Woche zu vervollständigen
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

1 Woche zu vervollständigen
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Compare AWS storage options and select the appropriate solution for ML data management.

  • Explore the end-to-end capabilities of Amazon SageMaker for building and managing ML workflows.

  • Secure sensitive data using AWS KMS and Secrets Manager for encryption and credential management.

Kompetenzen, die Sie erwerben

  • Kategorie: Data Pipelines
  • Kategorie: Cloud Security
  • Kategorie: AWS Kinesis
  • Kategorie: Amazon CloudWatch
  • Kategorie: Amazon Redshift
  • Kategorie: Data Storage
  • Kategorie: Real Time Data
  • Kategorie: AWS SageMaker
  • Kategorie: Encryption
  • Kategorie: Data Security
  • Kategorie: Feature Engineering
  • Kategorie: Amazon S3
  • Kategorie: AWS Identity and Access Management (IAM)
  • Kategorie: MLOps (Machine Learning Operations)

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

September 2025

Bewertungen

8 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

 Logos von Petrobras, TATA, Danone, Capgemini, P&G und L'Oreal

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist Teil der Spezialisierung Spezialisierung für Exam Prep MLA-C01: AWS Machine Learning Engineer Assocaite
Wenn Sie sich für diesen Kurs anmelden, werden Sie auch für diese Spezialisierung angemeldet.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 4 Module

Welcome to Week 1 of the AWS: End-to-End ML Workflows with SageMaker, Storage & Security course. This week, you’ll explore the core data infrastructure and streaming services that power scalable machine learning workflows on AWS. We’ll start by reviewing storage options such as Amazon S3, EBS, EFS, and FSx for NetApp ONTAP, and discuss how to select the right storage service based on performance and ML use case requirements. Next, you’ll examine database options for ML, followed by an in-depth look at real-time data ingestion and streaming using services like Amazon Kinesis, Amazon Managed Streaming for Apache Kafka, and Amazon Managed Service for Apache Flink. You’ll also complete a hands-on activity where you’ll create a data streaming pipeline using Kinesis Streams, Amazon S3, and AWS Lambda, enabling real-time data collection and processing for machine learning applications.

Das ist alles enthalten

10 Videos2 Lektüren2 Aufgaben

Welcome to Week 2 of the AWS: Model Training, Optimization & Deployment course. This week, you'll explore the broader capabilities of Amazon SageMaker and how it supports the full machine learning lifecycle. We’ll begin with an introduction and demo of SageMaker, highlighting its core services and development environment. You’ll then take a deeper dive into SageMaker Data Wrangler for efficient data preparation, followed by a detailed walkthrough of the SageMaker Feature Store, which enables consistent feature reuse across training and inference. As we move forward, you'll learn how to monitor model performance using SageMaker Model Monitor, helping ensure reliability and detect data drift in production. We’ll wrap up the week by using SageMaker JumpStart to quickly deploy pre-built models and solution templates, accelerating your ML experimentation and deployment process.

Das ist alles enthalten

6 Videos1 Lektüre2 Aufgaben

Welcome to Week 3 of the AWS: End-to-End ML Workflows with SageMaker, Storage & Security course. This week, you'll focus on securing and governing your machine learning workloads on AWS. We’ll start by exploring AWS Key Management Service (KMS) and AWS Secrets Manager, which help you securely store, manage, and encrypt sensitive data such as API keys and credentials. Next, we’ll cover AWS WAF and AWS Shield, two essential services for protecting ML applications from web threats and Distributed Denial of Service (DDoS) attacks. You’ll also learn how to use Amazon Macie to detect and protect sensitive data within S3 buckets, ensuring compliance with data privacy standards. We’ll wrap up the week with AWS Trusted Advisor, a powerful tool that provides real-time recommendations to improve security, performance, and fault tolerance across your AWS environment—enabling you to maintain a secure and cost-efficient ML infrastructure.

Das ist alles enthalten

6 Videos1 Lektüre2 Aufgaben

Welcome to Week 4 of the AWS: End-to-End ML Workflows with SageMaker, Storage & Security course. This week, you’ll explore tools that help you monitor, visualize, and optimize your machine learning workflows in production. We’ll begin with Amazon QuickSight, where you’ll learn how to analyze and visualize ML outputs for better business insights. You’ll then dive into SageMaker Model Monitor to detect anomalies in deployed models and ensure ongoing performance. To strengthen observability, you’ll work with AWS X-Ray and CloudWatch Logs to trace model behavior, debug issues, and gain insights into operational metrics. We’ll wrap up by using AWS Cost Explorer and Trusted Advisor to monitor usage and cost, and explore SageMaker Inference Recommender to choose optimal instance types for model deployment—ensuring cost-effective and high-performance inference at scale.

Das ist alles enthalten

6 Videos3 Lektüren2 Aufgaben

Erwerben Sie ein Karrierezertifikat.

Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.

Dozent

Whizlabs Instructor
Whizlabs
128 Kurse82.443 Lernende

von

Whizlabs

Mehr von Algorithms entdecken

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Coursera Plus

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen