This course provides a comprehensive, hands-on introduction to Artificial Intelligence and Predictive Analytics using Python. Learners will progress from foundational concepts of predictive modeling and ensemble methods to advanced unsupervised clustering techniques like Meanshift, Affinity Propagation, and Gaussian Mixture Models. The course then explores supervised learning algorithms, including Logistic Regression, Naive Bayes, and Support Vector Machines, and transitions into logic programming and problem-solving approaches such as heuristic search, local search, and constraint satisfaction problems.

4 days left: Discover new skills with 30% off courses from industry experts. Save now.


AI & Predictive Analytics with Python
Dieser Kurs ist Teil von Spezialisierung für Artificial Intelligence with Python: Foundations to Projects

Dozent: EDUCBA
Bei enthalten
Was Sie lernen werden
Apply predictive analytics and ML algorithms to real problems.
Analyze clustering, classification, and NLP pipelines in Python.
Construct AI solutions using logic, rules, and search strategies.
Kompetenzen, die Sie erwerben
- Kategorie: Scikit Learn (Machine Learning Library)
- Kategorie: Machine Learning Algorithms
- Kategorie: Applied Machine Learning
- Kategorie: Computational Logic
- Kategorie: Text Mining
- Kategorie: Unstructured Data
- Kategorie: Random Forest Algorithm
- Kategorie: Unsupervised Learning
- Kategorie: Data Science
- Kategorie: Natural Language Processing
- Kategorie: Predictive Modeling
- Kategorie: Supervised Learning
- Kategorie: Artificial Intelligence
- Kategorie: Predictive Analytics
- Kategorie: Data Processing
- Kategorie: Python Programming
- Kategorie: Algorithms
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
13 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 4 Module
This module introduces learners to the fundamentals of predictive analytics with Python, focusing on essential machine learning methods used in real-world applications. Learners will begin by exploring the core concepts of predictive analysis, then progress into powerful ensemble algorithms such as Random Forest, Extremely Random Forest, and Adaboost, while addressing practical challenges like class imbalance. The module culminates in applying these models to a real-world case study on traffic prediction, ensuring learners gain both conceptual understanding and hands-on predictive modeling experience.
Das ist alles enthalten
7 Videos3 Aufgaben1 Plug-in
This module explores the power of unsupervised learning techniques in Python for discovering hidden patterns in data. Learners will begin with the foundations of clustering methods such as Meanshift and advance into more sophisticated models like Affinity Propagation and Gaussian Mixture Models. The module emphasizes evaluating clustering quality metrics and applying these techniques in practical programming scenarios. By the end of this module, learners will be able to analyze, implement, and evaluate clustering algorithms for real-world applications in domains like customer segmentation, image processing, and pattern recognition.
Das ist alles enthalten
10 Videos3 Aufgaben
This module introduces learners to the fundamentals of supervised learning in Python and explores the integration of logic-based programming for AI problem-solving. The first part focuses on popular classification methods such as logistic regression, Naive Bayes, and Support Vector Machines (SVM), along with practical tools like the confusion matrix for evaluating predictive performance. The second part transitions into symbolic AI through logic programming, covering applications such as family tree reasoning, puzzle solving, heuristic search, local search techniques, and constraint satisfaction problems (CSPs). By the end of this module, learners will gain the ability to apply classification algorithms, interpret performance metrics, and construct logic-based solutions to real-world AI challenges.
Das ist alles enthalten
20 Videos3 Aufgaben
This module provides a practical foundation in Natural Language Processing (NLP) using Python and NLTK. Learners will explore the complete NLP pipeline, from tokenization and text preprocessing to stemming, lemmatization, and segmentation. The module further introduces advanced tasks such as information extraction, chunking, chinking, and Named Entity Recognition (NER). Finally, learners will study parsing techniques using Context-Free Grammar (CFG), recursive descent parsing, and shift-reduce parsing to analyze sentence structure. By the end of this module, learners will be able to apply NLP techniques in Python for text analysis, information extraction, and grammar-based parsing of natural language.
Das ist alles enthalten
22 Videos4 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Machine Learning entdecken
- Status: Kostenloser Testzeitraum
University of Pennsylvania
- Status: Kostenloser Testzeitraum
Edureka
- Status: Kostenloser TestzeitraumStatus: KI-Fähigkeiten
University of Pennsylvania
- Status: Kostenloser Testzeitraum
University of California San Diego
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,